本コーナー「情報の授業をしよう!」は、小学校 や中学校で情報活用能力を育む内容を授業で教え ている先生や、高校で情報科を教えている先生が、 「自分はこの内容はこういう風に教えている」と いうノウハウを紹介するものです. 情報のさまざ まな内容について、他人にどうやって分かっても

らうか、という工夫やアイディアは、読者の皆様 にもきっと役立つことと思います。そして「自分 も教え方の工夫を紹介したい と思われた場合は、 こちらにご連絡ください.

(E-mail: editj@ipsj.or.jp)

情報教育の視点による統計教育 「データ駆動型探究」の普及を目指して―

伊藤大貴

大分県立大分舞鶴高等学校

データサイエンス教育の充実を目指して

統計教育の必要性

高大接続の観点から見る統計教育

Society 5.0 に向けたさまざまな取り組みが進む中. 学校教育では、データをもとに行動や意思決定を行う 「データ駆動型」の学習活動を中心的に担う教科とし て,高校「情報 I」および「情報 II」の統計・データ サイエンスに関する学習の重要性が示されている。そ のような中、2020年度より大学の初年次教育におい ても、「数理・データサイエンス・AI」に関する講義 内容が位置づけられた、これは、大学生の数理・デー タサイエンス・AIへの関心を高め、適切に理解し活 用する基礎的な能力や、課題を解決するための実践 的な能力を育成するため、数理・データサイエンス・ AIに関する知識および技術について体系的な教育を 行うことを目的に設定されている. これらのことか ら、高大接続を見据えた統計に関する学習は重要性を 増しており、さらなる知見の集積が求められる、さら に、探究活動や課題研究における「データの収集・分 析・活用」の観点から照らし合わせても、高等学校普

通教科「情報」の位置づけは重要であると考えられる. 実際に、学習指導要領解説情報編を見ても、データの 活用に関する内容が充実しており、これからの情報教 育には「統計やデータサイエンス」に関するリテラシー への期待が含まれていることが分かる.

SSH 指定校としての役割

イノベーション人材を育成するための統計教育

本校大分県立大分舞鶴高等学校(以下舞鶴高校) は、2005年より「スーパーサイエンスハイスクール (SSH)」指定校として、さまざまな取り組みを行って きた. SSH 第 IV 期では、「高次の探究力を兼ね備え た Society 5.0 の社会をけん引するイノベーション創 出人材の育成 | を研究開発課題として掲げ、STEAM 教育、統計、プログラミングに特化した学びや、理 数科による高度な探究活動を行っている. その中で も、筆者は情報科の教員として、1年次の「データサ イエンス | や2年次の「SSH国際情報 | 等の授業科 目を担当し、データ駆動型探究に活かすための統計 教育に注力している. データ駆動型探究とは, デー タをもとに、新たな知見の追究や、課題解決の手法

連載 情報の授業をしよう

を探索することで意思決定を行う探究活動であると 捉えている. 舞鶴高校では、情報科目における学び の中で、データを取り扱うスキルや考え方を育成し、 探究活動に活かすことや、多くの学校にそのノウハ ウを普及させることをねらいとしている. たとえば、 1年次の「データサイエンス」ではスキルや考え方を 学び、2年次の「SSH国際情報」では、オープンデー タを用いた探究を行うことで、 学んだ力を活かす場 面を設定している. このカリキュラムにより、2年次 に行われる「課題研究」と並行してデータを活用し た探究を行うため、データ駆動型探究を促進するこ とができると考えている (表-1).

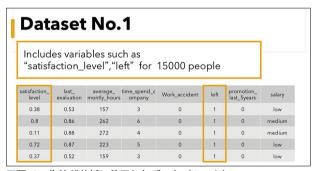
また、身近な題材や自分たちを被験者にした検証 データを取り扱うことで,「分析してみたい!」と思 えるような教材を開発することを意識している. た とえば、t検定を学ぶ授業では、「赤色と青色どちら が記憶に残りやすいか」を検証するようにしており、 ワクワクするような題材を取り入れている(図-1).

さらに、科学としての活動も意識し、「変数」の 概念だけでなく、「リサーチクエスチョン」や「仮説」

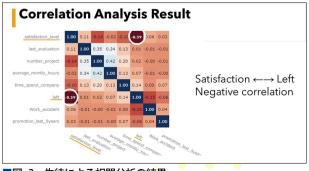
■表-1 データ駆動型探究を意識したカリキュラム

	単元	内容
1年 データサ イエンス	ICT / Excel 演習	情報社会や ICT の活用,Excel の活用方法について学ぶ
	Data Science 演習	身近なデータを用いて,統計的 な手法を用いた探究活動を行う
2年	課題研究のための統計学	多変量データを題材にした統計 手法について学ぶ
SSH 国際 情報	Global Data Science 探究 (普通科のみ)	オープンデータ(Kaggle)を統 計的に処理し,問題解決の糸口 を探る

※統計に関連する単元のみ抜粋



■図-1 t検定(実践)の授業スライド


などの取り扱いにも留意している.

オープンデータの活用

2年次の「SSH国際情報」では、表-1のとおり 「Global Data Science 探究」という単元を設定して いる。この単元では、オープンデータを活用して分 析する活動を行う. 班を編成し、Kaggle というオン ラインプラットフォームを利用している. Kaggle に は、無料で利用できる豊富なデータセットが提供さ れており、生徒の興味関心に応じたデータを取得す ることが可能である. 生徒自身では、収集すること が難しいようなデータが豊富にあり,実世界のデー タをもとに学びや探究を行う機会を得ることができ る. 実際に、生徒は Kaggle から得られたデータを分 析しながら、問題解決の糸口を探り、その成果を発表 する場として、台湾の生徒に英語で発表を行う場面を 設けている. 図-2 は生徒が実際に取得したデータセッ トであり、図-3は取得したデータセットをもとに後 述する「easyStat」を用いて相関分析を行った結果を、 スライドに記載したものである (図-2, 図-3). なお、 「Global Data Science 探究」は普通科のみ実施してい る単元であり、理数科は、理数科課題研究にてデータ 駆動型探究を行っている.

■図 -2 生徒が分析に使用したデータ (Kaggle)

■図 -3 生徒による相関分析の結果

このように、オープンデータを活用することで、 データに対する興味関心を高めることができるだけ でなく、サンプル数等の信頼性について考える機会 を提供することができる. また、「生徒がデータを選 ぶ ことにより、受け身になることなく、主体的に 分析や探究活動に取り組む様子が見受けられた.

統計指導における問題点 さまざまな制約

実際に統計を指導する際に、さまざまな制約が浮 上する。情報科を担当する教員であれば恐らく納得 していただけると思うが、主に以下の2点である.

- ①操作スキル
- ② PC のスペック

①については、さまざまな要因が考えられる. た とえば、1人1台端末が導入されたことによる「パ ソコン離れ」である.GIGA スクール構想による環 境整備に伴い、従来のコンピュータ教室の役割が再 評価され、一部の自治体ではコンピュータ教室廃止 の動きが出てきている.そのような中,文部科学省 は 2022 年 12 月 19 日に「GIGA スクール構想に基づ く1人1台端末環境下でのコンピュータ教室の在り 方について という通知を発出し、コンピュータ教 室の廃止に慎重な姿勢を示しているが、筆者の周辺 の公立小中学校では、コンピュータ教室を廃止して いる学校は少なくない.また.スマートフォンでで きることも多くなり、パソコンを持たない家庭も増 えているのではないだろうか、このような環境的な 要因により、子どもがパソコンに触れる機会が減少 していると考えられる. そのため,高校に入学し、「初 めてパソコンに触ります」といった生徒も増えてき ていることから、操作スキルに大きなばらつきが生 じているように感じている. ②については、授業で 使用する PC のスペックによって、表計算ソフト等 を使用した演習がスムーズにできないことが挙げら れる. 実際、筆者がいままでに勤務した2つの学校 では、起動に5分かかる、ブラウザや表計算ソフト の立ち上げに1分かかるなどといったハードウェア のスペックがボトルネックになることも多々起こっ

ている。さらに、一番困るのは、学年の全生徒が一 斉に探究活動を行う際に、「コンピュータ教室に入り きれない」といった問題も挙げられる. そこで、環 境的制約を極限まで低減することができるような Web アプリケーションの開発を行った.

Web アプリケーションの開発

ブラウザ統計「easyStat」

統計指導における問題点を払拭し、データ駆動型 探究を促進するために、環境的な要因に影響を受け ない統計分析 Web アプリケーションの開発を行っ た. 本アプリケーションは、1年次のデータサイエ ンスの「Data Science 演習」にて、統計的仮説検 定の後に取り扱うこととした. 実際の活用場面では、 授業用学校生活アンケート(睡眠時間や部活動の有 無等の多変量のデータセット)を使用し、分析を繰 り返すことで、それまでの授業で学んだ統計的な知 識・技能の定着を図った.2年次の「課題研究のた めの統計学」や「Global Data Science 探究」におい ても使用することで、並行して行われる探究活動に 活かせるよう工夫を行った. アプリケーション開発 における主な条件は以下のとおりである.

- ①1人1台端末で軽快に動作することができる
- ②データの加工に関する操作を最小限に抑える
- ③タッチ操作のみで操作することができる
- ④解釈の補助機能を実装する
- ①に関しては、文部科学省「GIGA スクール構想の 実現標準仕様書(2020)」を参考に,検討を行った結果, インストールが不要なブラウザベースでの Web アプ リケーションが望ましいと判断した. そのため、Web アプリケーションとして公開することで、コンピュー タ教室でなくとも1人1台端末を活用したデータ分 析が可能になり、物理的な環境制限を減らすことが できると考えられる. ②および③に関しては、統計 処理の阻害要因の1つである統計ソフトの操作性の 複雑さを低減するために、高校生の持つ ICT 操作ス キルを考慮し、タッチ操作のみで動作可能なシンプ ルな UI を実装した(図-4). 具体的には、分析するデー タの Excel ファイルをアップロードするだけで分析

=連載 情報の授業をしよう

が可能になるものとした. 実際に、情報授業で統計 を教える際に、Excel の操作を指導することになるが、 生徒の操作レベルのばらつきは非常に大きく、複雑 な処理になればなるほど、技能を指導する教員の負 担が大きくなってしまう、しかし、本アプリケーショ ンを使えば、ファイルをアップロードし、クリック やタップを行うだけで, 簡単に可視化や検定を行う ことができるため、技能指導や習得の時間を大幅に 減らすことができ、人間にしかできない「考察」や「意 思決定」に時間を割くことができるようになる.

④については、統計初学者のつまずきを考慮し、 有意水準の判定から解釈の補助を行う機能を実装し た(図-5). これにより、検定処理の知識がない生 徒や指導に不安を持つ教員でも、 容易に分析や指導 を行うことできると考えられる. さらに、「情報 I」「情 報IIIで取り扱う統計的な分析および探究活動で想

■図-4 「easyStat」の操作画面(例:相関分析) 参考:https://huggingface.co/spaces/itou-daiki/easy_stat_demo

解釈の補助

【勉強時間】と【スマホ時間】には中程度の負の相関がある (r=-0.51) 【勉強時間】と【睡眠時間】にはほとんど相関がない (r=-0.04) 【スマホ時間】と【睡眠時間】にはほとんど相関がない (r=-0.14)

■図 -5 解釈の補助機能の例

定し得る手法である、箱ひげ図、散布図(行列含む)、 相関分析、t 検定、分散分析、回帰分析等を実装した。 ブラウザ機械学習「easyAutoML」

「数理・データサイエンス・AI の「AI の理解 において、統計は重要な位置を占めており、高校「情 報 I」および「情報 II」における統計・データサイ エンスに関する学習の重要性が示されている。中で も機械学習は、統計の考え方を基盤にしてデータの パターンや法則性を見つけ出し、それをもとに予測 や意思決定を行う技術である. 高校「情報I」およ び「情報 II | で学ぶ統計・データサイエンスの内容は、 これらの基礎的な概念や手法を理解するための重要 なステップとして位置づけられている.

たとえば、回帰分析や相関係数の理解は、データ 間の関係性を探るための基本的なスキルである. ま た、データの可視化や確率分布の概念は、機械学習 モデルの結果を正しく解釈し、意味ある洞察を引き 出すために欠かせない要素であり、これらの知識を 活用することで、生徒は単なるデータ分析にとどま らず、モデルの構築や評価に関する初歩的な理解を 深めることができる.

さらに、機械学習の実践においては、大量のデー タから自動的に学習し、汎化能力を持つモデルを構 築する手法が重要になるが、その背後にあるアルゴ リズムや統計的な理解があることで、ブラックボッ クス的に結果を信じるのではなく、理論に基づいた 批判的な思考を養うことが可能となる.

このように、 高校での統計・データサイエンスの 学習は、単に数値を扱う技術を身につけるだけでな く、AI が社会に及ぼす影響や応用分野についても深 く考えるための土台を築くことにつながる.

しかし、統計と AI の関係性について、実践的に 学ぶ教材は存在するが、どの教材においても、敷居 が高い.また,機械学習の細かなステップを学ぶの には時間がかかるだけでなく、「情報 II」を開設して いる学校が少ないことから、多くの生徒が学ぶこと は現段階では困難である.

そこで、統計と AI の関係性について学ぶために、 身近なデータで簡単に機械学習を行うことのできる Web アプリケーションの開発を行った。主な条件は 以下のとおりである.

- ①タブレット PC で軽快に動作することができる
- ②データの加工に関する操作を最小限に抑える
- ③タッチ操作のみで操作することができる
- ④機械学習のステップを理解できる

①②③に関しては、「easyStat」と同様、環境的要 因に依存しない配慮を行った. ④については、一般 的な機械学習の流れの理解を促すために、 ステップ ごとにボタンを実装し、使用者の理解を補助する工 夫を行った. また、モデルのダウンロードや、モデ ルの可視化機能の実装も行った(図-6,図-7,図-8).

これらの Web アプリケーションを開発することで、 AIの基礎である統計や機械学習を学びながら探究を行 うことができる. 実際に, 本校では, これらの Web ア プリケーションを使って探究を行っている. また, 探 究の成果として、さまざまなイベントや学会を通した 成果の発表を行うようになった。イベントや学会に参 加することで、専門家から助言を得るだけでなく、ほ かの探究に触れることで、さらなる発展が期待できる.

統計を通した学びの変革

探究には「主体性」が重要であり、教員はあくま でもファシリテーションが役目である。生徒が自走 するまでの支援が必要であるが、科学的な根拠を抽 出するための統計および機械学習を用いた分析には、

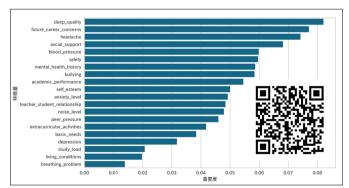
	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	0.149	0.1521	0.3888	0.7778	0.2187	0.0661	0.:
rf	Random Forest Regressor	0.1503	0.1542	0.3918	0.7747	0.22	0.0691	0.19
knn	K Neighbors Regressor	0.1527	0.1729	0.4144	0.7459	0.2313	0.0742	0.04
xgboost	Extreme Gradient Boosting	0.1559	0.1828	0.4239	0.7349	0.2355	0.0744	0.30
gbr	Gradient Boosting Regressor	0.1699	0.1866	0.4307	0.7259	0.2393	0.0893	0.1
dt	Decision Tree Regressor	0.1857	0.2948	0.5408	0.5609	0.3001	0.1046	0.01
lightgbm	Light Gradient Boosting Machine	0.1944	0.1836	0.4274	0.7324	0.2375	0.1033	0.08
huber	Huber Regressor	0.2072	0.1588	0.3981	0.7671	0.2241	0.1159	0.04
br	Bayesian Ridge	0.2177	0.1618	0.4018	0.763	0.2275	0.1215	0.04
ridge	Ridge Regression	0.2225	0.1648	0.4055	0.7587	0.2294	0.1269	0.082

■図 -6 「easyAutoML」の操作画面(モデル比較)

今回開発した Web アプリケーションによって、探 究を深めることができると考えられる. さまざまな 教材や Web アプリケーションを活用した「学びの 変革 によって、社会を変えようとする生徒が増え ることを願っている.

情報は、探究だけでなく、各教科での学びをつな げる教科であり、今後の子どもたちにとって重要な 位置づけである.「共通テスト」にとらわれることな く、この科目の素晴らしさを伝えていくことが、情 報科を担当する教員の役目ではないだろうか.

(2025年1月6日受付)



伊藤大貴 (正会員) itou-daiki@oen.ed.jp

大分県立大分舞鶴高等学校 情報科教諭. 大分 大学大学院教育学研究科修了後、大分県内の公立 学校に勤務. 統計・プログラミング教育に従事. 科学部情報班の顧問として情報学研究や情報オ リンピックの指導に尽力している.

チューニング前						チューニング後							
Fold	MAE	MSE	RMSE	R2	RMSLE	MAPE	Fold	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	0.161	0.1503	0.3876	0.7817	0.2118	0.0792	0	0.1465	0.1414	0.3761	0.7945	0.2036	0.073
1	0.1631	0.1494	0.3865	0.7961	0.2114	0.0796	1	0.1464	0.1437	0.379	0.8039	0.2054	0.0712
2	0.2078	0.1997	0.4468	0.7188	0.2645	0.0737	2	0.1833	0.1841	0.4291	0.7407	0.2565	0.0574
3	0.1504	0.1318	0.3631	0.7744	0.2206	0.0531	3	0.1389	0.1295	0.3598	0.7784	0.2176	0.0471
4	0.1378	0.1257	0.3546	0.8219	0.197	0.0713	4	0.1232	0.1224	0.3499	0.8265	0.1935	0.0604
Mean	0.164	0.1514	0.3877	0.7786	0.221	0.0714	Mean	0.1477	0.1442	0.3788	0.7888	0.2153	0.0618
Std	0.0237	0.026	0.0323	0.034	0.023	0.0097.	Std	0.0197	0.0214	0.0273	0.0286	0.022	0.0095

■図 -7 「easyAutoML」の操作画面(チューニング)

■図 -8 「easyAutoML」の操作画面(可視化・評価)