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1 Introduction

Given a multigraph G = (V,E) with n vertices andm edges
and a color set C = {1, 2, . . . , k}, the nearly equitable edge
coloring is an assignment of given colors to edges in G such
that, among the edges incident to each vertex, the num-
bers of edges colored with any two colors differ by at most
two. The notion of the nearly equitable edge coloring was
introduced in 1982 by Hilton and de Werra [1], who also
proved that any graph has a nearly equitable edge coloring.
Their proof is constructive and easily leads to an algorithm
for finding such a coloring in O(km2) time as mentioned
in [2]. Later, Nakano et al. [2] showed an algorithm that
runs in O(m2/k+mn) time. In 2004, Xie et al. [3] presented
a more efficient algorithm, which improved the running time
to O(m2/k) and moreover satisfied the following balanced
constraint: The numbers of the edges colored with any two
colors differ by at most one.

The previous algorithm presented by Xie et al. works as
follows: Initially assign k colors 1, 2, . . . , k to k uncolored
edges repeatedly until all the edges are colored, and then
invokes an algorithm called Recolor to modify the current
edge coloring whenever it is not nearly equitable. Hence,
the running time of the algorithm is decided by the running
time of Recolor and the number of calls to Recolor. To
analyze the number of calls to Recolor, they introduced
a potential Φπ, and showed that Recolor always runs in
O(|Eπ(i) ∪ Eπ(j)|) time for relevant colors i and j and de-
creases Φπ by at least one, where π is the initial edge col-
oring and Eπ(i) is the set of edges colored with i.

In this paper, we investigate the running time of a modi-
fied version of their algorithm in which the initial edge col-
oring is generated randomly according to the following rule:
Randomly pick a color i ∈ C to assign an edge e ∈ E until all
the edges are colored. Using Chernoff bound [4], we show
that, for arbitrary constants γ ∈ (0, 1) and ε ∈ (0, 1/2),
with high probability for sufficiently large n, such a random
color assignment π satisfies |Eπ(i)| ≤ 2m/k for all colors
i ∈ C and Φπ = O(kn1/2m1/2+ε) if k = O(m1−γ). Hence,
by repeatedly using Recolor, the random color assign-
ment can be modified to a nearly equitable edge coloring in
O
¡
n1/2m3/2+ε

¢
time with high probability for sufficiently

large n. This time complexity is better than Xie at al.’s
original algorithm when the graph is dense and k is small.

The rest of the paper is organized as follows. In Sec-
tion 2, we give some definitions. Section 3 introduces the
new version of Xie et al.’s algorithm when it starts with a
random color assignment, and Section 4 analyzes its time
complexity. Finally, concluding remarks are in Section 5.
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2 Preliminaries

A multigraph G is a graph that allows multiple number of
edges between vertices. Let V and E denote the sets of ver-
tices and edges of G, respectively. The following definitions
will be used throughout this paper.

• Let n = |V | and m = |E|. Note that m ≥ n− 1 holds
for any connected graph.

• We denote the given color set by C = {1, 2, . . . , k},
where k is the number of given colors.

• We denote an edge coloring by a mapping π: E → C;
i.e., if an edge e ∈ E is colored with a color i, then
π(e) = i.

• For each vertex v ∈ V , let N(v) = {(v,w) ∈ E} de-
note the edges incident to v in G and d(v) = |N(v)|
be its degree. Then, dπ(v, i) = |{e ∈ N(v) | π(e) = i}|
stands for the number of edges colored with i and in-
cident to v, while Eπ(i) = {e ∈ E | π(e) = i} stands
for the set of edges in E colored with i.

• Let Vπ(i, j) be the set of end vertices of edges in
Eπ(i) ∪ Eπ(j); i.e., Vπ(i, j) = {v ∈ V | ∃w ∈
V, (v,w) ∈ (Eπ(i) ∪Eπ(j))}. Then let Gπ(i, j) =
(Vπ(i, j), Eπ(i) ∪Eπ(j)) be the subgraph whose edges
are Eπ(i) ∪Eπ(j) and vertices are their end vertices.

Then, the definition of nearly equitable edge coloring intro-
duced by Hilton and Werra [1] is as follows.

Definition 1 [1]: Given a multigraph G = (V,E) and a
color set C = {1, 2, . . . , k}, the nearly equitable edge color-
ing π is an assignment of the given k colors to all the edges
in G, such that for any vertex v ∈ V and different colors
i, j ∈ C, |dπ(v, i)− dπ(v, j)| ≤ 2.

Without loss of generality, we assume that G is connected.

3 The Algorithm Starting with a Random
Color Assignment

We describe the modified version of Xie et al.’s algorithm,
which starts with a random color assignment and calls al-
gorithm Recolor [3] until a nearly equitable edge coloring
is obtained. We call it algorithm RCAR, which stands for
Random Color Assignment and Recolor.

The recoloring phase works as follows. Whenever the
current coloring π has a vertex u that breaks the condi-
tion of Definition 1, choose two colors α and β with max-
imum and minimum dπ(u, i), respectively, and call algo-
rithm Recolor to recolor those edges in Eπ(α) ∪ Eπ(β).
Algorithm Recolor first constructs an augmented graph
Ĝ = (V̂ , Ê) by adding a vertex and some edges to make
Gπ(α,β) connected and the degrees of all vertices even.
It then finds an Euler circuit in Ĝ starting at the ad-
ditional vertex and colors the edges alternately with α
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and β along the Euler circuit, so that the resulting col-
oring π0 is balanced with respect to the two colors, i.e.,
||Eπ0(α)|− |Eπ0(β)|| ≤ 1 holds after recoloring. The algo-
rithm is formally described as follows.

Algorithm RCAR(G, C)
Input: a multigraph G = (V,E) and

a k-color set C = {1, 2, . . . , k}
Output: a nearly equitable edge coloring π for G

1. For each e ∈ E, randomly pick a color i ∈ C
(the probability of choosing a color i is 1/k)
and let π(e)← i.

2. while there exists u ∈ V and different i, j ∈ C
such that |dπ(u, i)− dπ(u, j)| ≥ 3 do

3. For the vertex u, find two colors α, β ∈ C satisfying
dπ(u,α) = maxi∈C (dπ(u, i))
dπ(u,β) = mini∈C (dπ(u, i)) .

4. Call Recolor(G,α,β,π) to modify π.
5. Output π and stop.

Algorithm Recolor(G,α,β,π)
Input: a multigraph G = (V,E), colors α and β,

and a coloring π
Task: modify the edge coloring π for Gπ(α,β)

1. Let V̂ ← Vπ(α,β) ∪ {v̂} (v̂ 6∈ V ) and
Ê ← Eπ(α) ∪Eπ(β).

2. for each connected component H in Gπ(α,β) do
3. if H has odd-degree vertices then
4. For each odd-degree vertex v in H,

add an edge (v, v̂) into Ê.
5. else
6. if H has a vertex v such that

|dπ(v,α)− dπ(v,β)| ≥ 2 then
Draw two parallel edges between v and v̂,

and add them into Ê.
7. else

Let v be an arbitrary vertex in H.
Draw two parallel edges between v and v̂,

and add them into Ê.

8. Let Ĝ← (V̂ , Ê).
9. Let a sequence of edges e1, e2, . . . , el be an Euler

circuit of Ĝ such that the tail of e1 is v̂.
Then let π̂(et)← α if t is odd and
π̂(et)← β otherwise for all t = 1, 2, . . . , l.

10. Let π(e)← π̂(e) for all edge e in Gπ(α,β), and stop.

4 Analysis of Algorithm RCAR

4.1 Results of Recolor

Recoloring edges along with traversals of Euler circuits
in graphs is a common technique for edge coloring.
Xie et al. [3] shows that the running time of modifying
an arbitrary initial edge coloring π to a nearly equitable
edge coloring is decided by the running time of algorithm
Recolor and the number of calls to it. To analyze the
number of calls to Recolor, they introduce the following
potential Φπ and proved the following lemmas. For all ver-
tices v ∈ V , let d̄(v) = bd(v)/kc. Define

Φπ(v) =
X
i∈C

ϕ2d̄(v)−1 (dπ(v, i))

Φπ =
X
v∈V

Φπ(v),

where ϕ2d̄(v)−1 (dπ(v, i)) is defined by

ϕba(x) = max{x− a− b, a− x, 0} (1)

with x = dπ(v, i), a = d̄(v) − 1 and b = 2. By definition,
Φπ ≥ 0 holds for any coloring π.

Lemma 1 [3]: Let π and π0 be the coloring before
and after calling Recolor. Then Recolor runs in
O(|Eπ(α) ∪ Eπ(β)|) time and the coloring π0 satisfies
||Eπ0(α)|− |Eπ0(β)|| ≤ 1.

Lemma 2 [3]: Assume that there exists a vertex u and col-
ors α, β such that dπ(u,α) ≥ d̄(u)+1, dπ(u,β) ≤ d̄(u) and
dπ(u,α)−dπ(u, β) ≥ 3 for a coloring π, and let π0 be the col-
oring after calling Recolor(G,α, β,π). Then Φπ0 ≤ Φπ−1
holds.

4.2 Analysis of Random Color Assignment

In this section, we use Chernoff bound [4] to show that, for
arbitrary constants γ ∈ (0, 1) and ε ∈ (0, 1/2), the random
color assignment π of algorithm RCAR satisfies |Eπ(i)| ≤
2m/k for all colors i ∈ C and Φπ = O(kn1/2m1/2+ε) with
high probability for sufficiently large n if k = O(m1−γ).
The explanation of Chernoff bound can be found in many
books such as [5, 6]. Here we use the following two versions
of it in Section 4.1 of [5] and in Appendix A of [6], respec-
tively.

Theorem 1 [4, 5]: Let X1,X2, . . . ,Xr be independent
Poisson trials such that, for 1 ≤ i ≤ r, Pr(Xi = 1) = pi
and Pr(Xi = 0) = 1 − pi, where 0 < pi < 1. Then, for
X =

Pr

i=1
Xi, µ =

Pr

i=1
pi, and any δ > 0,

Pr(X > (1 + δ)µ) <

µ
eδ

(1 + δ)1+δ

¶µ
. (2)

Theorem 2 [4, 6]: Let Y1, Y2, . . . , Yr be mutually in-
dependent random variables such that, for 1 ≤ i ≤ r,
Pr(Yi = 1 − pi) = pi and Pr(Yi = −pi) = 1 − pi, where
0 ≤ pi ≤ 1. Then, for Y =

Pr

i=1
Yi and any a > 0, Pr(Y >

a) < e−2a
2/r holds. Note that Pr(Y < −a) < e−2a

2/r also
holds by symmetry, and hence we have

Pr(|Y | > a) < 2e−2a2/r. (3)

Each edge e ∈ E is colored with a color i ∈ C with
probability 1/k. For each e ∈ E and i ∈ C, we define an
indicator random variable Xe

π(i) that takes value 1 if and
only if e is colored with i. Then we have

Xe
π(i) =

½
1 with probability 1

k

0 with probability 1− 1
k
.

For the random coloring, |Eπ(i)| is a random variable sat-
isfying

|Eπ(i)| =
X
e∈E

Xe
π(i). (4)
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Using Chernoff bound (2) with δ = 1 and µ = m/k, for all
colors i ∈ C, we have

Pr
³
|Eπ(i)| > 2m

k

´
<
³
e

4

´m/k
. (5)

For k ≤ cm1−γ (c > 0 and γ ∈ (0, 1) are constants),
the probability of the existence of a color i ∈ C satisfying
|Eπ(i)| > 2m/k is

Pr
³
∃i, |Eπ(i)| > 2m

k

´
≤

X
i∈C

Pr
³
|Eπ(i)| > 2m

k

´
≤ k

³
e

4

´m/k
≤ cm1−γ

³
e

4

´mγ/c

. (6)

Thus, we obtain the following lemma.

Lemma 3: Given an n-vertex m-edge multigraph G =
(V,E) and a k-color set C = {1, 2, . . . , k}, for any con-
stants c > 0 and γ ∈ (0, 1), the random coloring π satisfies
|Eπ(i)| ≤ 2m/k for all colors i ∈ C with probability at least
1− cm1−γ(e/4)m

γ/c if k ≤ cm1−γ .

We now consider the bound on Φπ of the random color-
ing. To make the proofs in the following simple, we define
Φ̂π(v) and Φ̂π as follows:

Φ̂π(v) =
X
i∈C

ϕ0d(v)/k (dπ(v, i))

=
X
i∈C

¯̄̄̄
dπ(v, i)− d(v)

k

¯̄̄̄
Φ̂π =

X
v∈V

Φ̂π(v),

where ϕ0d(v)/k (dπ(v, i)) is defined by equation (1) with x =
dπ(v, i), a = d(v)/k and b = 0. It is easy to show that for
any constants a, a0, b ≥ 0 and b0 ≥ 0 satisfying a ≤ a0 and
a0 + b0 ≤ a + b, ϕba(x) ≤ ϕb

0
a0(x) holds for all x. Thus, for

d̄(v) − 1 ≤ d(v)/k and (d(v)/k) + 0 ≤ (d̄(v) − 1) + 2, we
obtain Φπ(v) ≤ Φ̂π(v) for all vertices v ∈ V and Φπ ≤ Φ̂π.
Let ε ∈ (0, 1/2) be an arbitrary constant. For the vertices

v ∈ V with d(v) ≤ nε, we obtain

Φ̂π(v) =
X
i∈C

dπ(v,i)>d(v)/k

µ
dπ(v, i)− d(v)

k

¶

+
X
i∈C

dπ(v,i)≤d(v)/k

µ
d(v)

k
− dπ(v, i)

¶

≤
X
i∈C

dπ(v,i)>d(v)/k

dπ(v, i) +
X
i∈C

dπ(v,i)≤d(v)/k

d(v)

k

≤ 2d(v) = O(nε).

Hence, the contribution of such vertices to the value of Φ̂π
is X

v: d(v)≤nε
Φ̂π(v) = O(n

ε+1). (7)

For the remaining vertices v ∈ V with d(v) > nε, we
use Chernoff bound (3) to show their contribution to the

value of Φ̂π. For convenience, we define a random variable
Y e
π (i) = X

e
π(i)− 1/k, which satisfies

Y e
π (i) =

½
1− 1

k with probability 1
k

− 1
k with probability 1− 1

k .

Then, let

Yπ(v, i) =
X

e∈N(v)

Y e
π (i),

which signifies the number of the edges incident to a vertex
v and colored with i. Then, dπ(v, i) becomes a random
variable, which satisfies

dπ(v, i) =
X

e∈N(v)

Xe
π(i) =

X
e∈N(v)

³
Y e
π (i) +

1

k

´
=

X
e∈N(v)

Y e
π (i) +

d(v)

k
= Yπ(v, i) +

d(v)

k
.

Using Chernoff bound (3), we obtain

Pr

µ¯̄̄̄
dπ(v, i)− d(v)

k

¯̄̄̄
> (d(v))1/2+ε

¶

= Pr(|Yπ(v, i)| > (d(v))1/2+ε)

< 2e−2(d(v))
2ε

< 2e−2n
2ε2

(8)

for all vertices v ∈ V with d(v) > nε and all colors i ∈ C.
Thus, the probability that there exists a pair of v ∈ V
with d(v) > nε and i ∈ C satisfying |dπ(v, i) − d(v)/k| >
(d(v))1/2+ε is

Pr

µ
∃v s.t. d(v) > nε,∃i,

¯̄̄̄
dπ(v, i)− d(v)

k

¯̄̄̄
> (d(v))1/2+ε

¶

<
X
i∈C

X
v: d(v)>nε

2e−2n
2ε2 ≤ 2kne−2n2ε

2

. (9)

Then, we have

∀v s.t. d(v) > nε, ∀i,
¯̄̄̄
dπ(v, i)− d(v)

k

¯̄̄̄
≤ (d(v))1/2+ε

with probability at least 1 − 2kne−2n2ε
2

. When this hap-
pens, we obtainX

v: d(v)>nε

Φ̂π(v) ≤ k
X

v: d(v)>nε

(d(v))1/2+ε

≤ k
X
v

(d(v))1/2+ε

≤ kn
³
2m

n

´1/2+ε
= O(kn1/2−εm1/2+ε). (10)

Note that the third inequality
P

v
(d(v))1/2+ε ≤

n (2m/n)1/2+ε follows from the fact that (d(v))1/2+ε is
a concave function of d(v) for any ε ∈ (0, 1/2) andP

v∈V d(v) = 2m holds.
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Then, (7) and (10) imply

Φπ ≤ Φ̂π = O(nε+1 + kn1/2−εm1/2+ε)

= O(kn1/2m1/2+ε) (11)

(recall that we assumed G is connected, which implies
m ≥ n− 1). Thus, we obtain the following lemma.

Lemma 4: Given an n-vertex m-edge multigraph G =
(V,E) and a k-color set C = {1, 2, . . . , k}, for any con-
stant ε ∈ (0, 1/2), the random coloring π satisfies Φπ =

O(kn1/2m1/2+ε) with probability at least 1− 2kne−2n2ε
2

.

Using Lemmas 3 and 4, we have

∀i, |Eπ(i)| ≤ 2m

k
and Φπ = O(kn

1/2m1/2+ε)

with probability at least 1− cm1−γ(e/4)m
γ/c−2kne−2n2ε

2

.
For

lim
n→∞

µ
1− cm1−γ

³
e

4

´mγ/c

− 2kne−2n2ε
2
¶
= 1,

we have the following lemma about the random coloring.

Lemma 5: Given an n-vertex m-edge multigraph G =
(V,E) and a k-color set C = {1, 2, . . . , k}, randomly pick
a color i ∈ C to assign an edge e ∈ E until all the edges are
colored. Then, for any constants ε ∈ (0, 1/2) and γ ∈ (0, 1),
such a random coloring π satisfies |Eπ(i)| ≤ 2m/k for all
colors i ∈ C and Φπ = O(kn1/2m1/2+ε) almost surely for
sufficiently large n if k = O(m1−γ).

4.3 Running Time of Algorithm RCAR

We now consider the total running time of algorithm
RCAR. For arbitrary constants ε ∈ (0, 1/2) and
γ ∈ (0, 1), assume that maxi∈C |Eπ(i)| ≤ 2m/k and Φπ =
O(kn1/2m1/2+ε) hold for the initial random coloring,
which are satisfied almost surely for sufficiently large n if
k = O(m1−γ) by Lemma 5. Then, Lemma 1 implies
that Recolor runs in O(m/k) time and maxi∈C |Eπ0(i)| ≤
2m/k holds for the coloring π0 after executing Recolor.
Whenever Recolor is called from algorithm RCAR, the
vertex u and colors α and β in Line 3 of RCAR satisfy
dπ(u,α) ≥ d̄(u) + 1, dπ(u,β) ≤ d̄(u) and dπ(u,α) −
dπ(u,β) ≥ 3. Then, using Lemma 2, Φπ decreases by
at least 1 when invoking Recolor. Recall that Φπ ≥ 0
holds for any coloring π. Hence the number of calls to
Recolor cannot exceed the initial value of Φπ. The above
assumption implies that, after O(kn1/2m1/2+ε) invocations
of Recolor, algorithm RCAR must stop. Thus, the total
running time of algorithm RCAR becomes

O
³
kn1/2m1/2+ε

³
m

k

´´
= O

¡
n1/2m3/2+ε

¢
, (12)

and we obtain the following theorem.

Theorem 3: For any constants ε ∈ (0, 1/2) and γ ∈ (0, 1),
algorithm RCAR solves the nearly equitable edge coloring
problem in O

¡
n1/2m3/2+ε

¢
time almost surely for suffi-

ciently large n if the number of given colors k = O(m1−γ),

where m and n are the numbers of edges and vertices, re-
spectively.

Below we discuss when the above running time of algo-
rithm RCAR becomes faster than O(m2/k), which is the
fastest running time among the existing algorithms.
Consider the ratio

n1/2m3/2+ε

m2/k
= kn1/2m−1/2+ε. (13)

The condition

lim
n→∞

¡
kn1/2m−1/2+ε

¢
= 0 (14)

is equivalent to

kn1/2 = o(m1/2−ε). (15)

This is satisfied when the graph is dense and k is small; e.g.,
when k = O(1) and m = Ω(nθ) for a constant θ > 1.

5 Concluding remarks

In this paper, we considered the nearly equitable edge col-
oring problem and introduced an algorithm called RCAR,
which is a modified version of Xie et al.’s algorithm [3] in
that it starts with a random color assignment. For any con-
stants ε ∈ (0, 1/2) and γ ∈ (0, 1), algorithm RCAR runs in
O
¡
n1/2m3/2+ε

¢
time with high probability for large n if the

number of given colors k = O(m1−γ), where n and m are
the numbers of vertices and edges, respectively. This com-
putation time is faster than the existing algorithms when
the graph is dense and k is small.
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Polytechnique Fédérate de Lausanne, Switzerland.

[2] S. Nakano, Y. Suzuki, and T. Nishizeki. An algo-
rithm for the nearly equitable edge-coloring of graphs
(in Japanese). The IEICE Transactions on Informa-
tion and Systems (Japanese Edition), J78-D-I(5):437—
444, 1995.

[3] X. Xie, T. Ono, S. Nakano, and T. Hirata. An im-
proved algoirthm for the nearly equitable edge-coloring
problem. IEICE Transactions on Fundamentals, E87-
A(5):1029—1033, 2004.

[4] H. Chernoff. A measure of the asymptotic efficiency for
tests of a hypothesis based on the sum of observations.
Annals of Mathematical Statistics, 23:493—509, 1952.

[5] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[6] N. Alon and J.H. Spencer. The Probabilistic Method
(2nd Edition). John Wiley & Sons, 2000.

16

FIT2007（第6回情報科学技術フォーラム）




